NMR Relaxation Time Studies of Ionophoric Calixarene Esters

Akihiro YAMADA, Tatsuya MURASE, Kiyoshi KIKUKAWA*

Tsutomu MATSUDA, and Seiji SHINKAI*

Department of Industrial Chemistry, Faculty of Engineering,

Kinki University in Kyushu, Kayanomori, Iizuka 820

Department of Organic Synthesis, Faculty of Engineering,

Kyushu University, Fukuoka 812

Relaxation times of ethoxycarbonylmethyl derivatives of p-t-butylcalix[n]arenes (n=4, 6, and 8) were estimated for the first time with $^1\mathrm{H}$ NMR. It was shown that the benzene units feature a "seesaw" motion around the ArCH2Ar circle and the motion is suppressed by Na $^+$ serving as a template ion.

Calixarenes are cyclic oligomers made up of phenol units just as cyclodextrins are made up of glucose units. Although these two oligomeric macrocycles have a similar cavity-shaped architecture, there exists a basic difference: the cyclodextrin cavity is conformationally fixed, whereas the conformational freedom still remains in the calixarene cavity. $^{1-3}$) Thus, in order to understand the essential difference as host molecules between cyclodextrins and calixarenes, it is of great significance to assess the conformational properties characteristic of calixarene cavities. From a spectroscopic viewpoint, dynamic NMR studies and NMR relaxation time studies would provide useful information about the conformational properties. In contrast to a number of examples for dynamic NMR studies, (1-3) NMR relaxation time studies have been very limited. To the best of our knowledge, there exists only one precedent which deals with ¹H NMR relaxation times of t-butylamine complexed with calixarenes (but not those of calixarenes themselves). 4) In this communication, we report systematic studies on ^{1}H NMR relaxation times (T₁) of ionophoric calix[n]arene esters (1_n : n=4, 6, and 8). The main purpose of this study is to understand how the molecular motion of the calix[n]arenes changes upon inclusion of Na+.

 $^{1}_{n}$

1₄-Na⁺ Complex

456 Chemistry Letters, 1990

The synthesis of 1_n was described previously.⁵⁾ The \mathbf{T}_1 values of the proton resonances were obtained in THF-d₈ at 90 MHz and 36 $^{\rm OC}$ under a nitrogen atmosphere by using the inversion recovery method.⁶⁾

It is known that 1_n can bind Na^+ through interactions with two oxygens in the OCH $_2$ CO moiety. 7,8) In particular, 1_4 strongly encapsulates Na^+ . 7,8) The influence of added alkali picrates on chemical shifts of $\underset{\sim}{\textbf{1}}_n$ is summarized in Table 1. 14 adopts a "cone" conformation and the oxygen-through-the-annulus rotation is sterically inhibited. 7) Thus, it gives a pair of doublets for the ArCH₂Ar protons. In $\frac{1}{2}$ 6 and $\frac{1}{2}$ 8, on the other hand, the rotation is still allowed, giving a sharp singlet for the ArCH₂Ar protons. In 1_4 , the δ values in the presence of Na⁺ generally shift to lower magnetic fields, which is attributed to the electron-withdrawing nature of Na⁺. There are two exceptions, however: (i) the OCH₂CO protons shift to the higher magnetic field by 0.21 ppm and (ii) the difference in δ between ${\rm H}_{\rm exo}$ and ${\rm H}_{\rm endo}$ becomes smaller (1.80 ppm in the absence of Na⁺ to 0.98 ppm in the presence of Na⁺). As illustrated below, the OCH2CO protons are fixed on the benzene ring when the two oxygens coordinate to Na⁺. Thus, these protons undergo the effect of the ring current which causes the up-field shift. The change (ii) implies that when 1_4 complexes Na^+ , H_{exo} is less shielded whereas $H_{\mbox{\footnotesize endo}}$ is more shielded. According to X-ray crystallographic studies by Arduini et al., 9) 25,26,27,28-tetrakis(N,Ndiethylaminocarbonyl)methoxy-p-t-butylcalix[4]arene (which has the structure similar to $\mathbf{1}_{4}$) adopts $\mathbf{C}_{2\mathbf{v}}$ symmetry whereas its \mathbf{Na}^{+} complex adopts $\mathbf{C}_{4\mathbf{v}}$ symmetry. This change from lower symmetry to higher symmetry induces the shift of the $ArCH_2Ar$ protons leading to the change (ii). In comparison to 1_4 , the δ values for 1_6 and 1_8 were less affected by Na $^+$. In particular, the shifts observed for $\frac{1}{8}$ were small. These results indicate that through complexation with Na⁺, $\frac{1}{14}$ undergoes the most distinct structural change and 1_6 next.

We previously evaluated the tightness of alkali picrate ion pairs from the shift of the absorption maxima. For sodium picrate, for example, the shift to longer wavelengths induced by 1_n was in the order of $1_4 > 1_6 > 1_8$. In particular, the shift induced by 1_4 is as large as that induced by cryptand 222, indicating that sodium picrate encapsulated in 1_4 is strongly solvent-separated. As shown in Table 1, the δ value for picrate ion shifts to higher magnetic fields in the order of $1_4 > 1_6 > 1_8 \approx$ no 1_n . This indicates that the tightness of the ion pairs can be detected by the 1_H NMR chemical shift: the more solvent-separated, the larger up-field shift.

Chemistry Letters, 1990 457

Proton	δ/ppm							
	1 4	1 ₄ -Na ⁺	1 6	¹ 6 ^{-Na⁺}	18	¹ 8-Na⁺		
a	1.26	1.36	1.20	1.00	0.97	0.98		
b	4.17	4.36	4.16	3.97	3.94	3.97		
С	4.78	4.57	4.49	4.20	4.12	4.22		
đ	1.09	1.16	1.02	1.12	1.13	1.13		
e(exo)	3.14	3.42)						
		}	4.05	4.06	4.08	4.05		
e(endo)	4.94	4.40)						
f	6.81	7.23	7.03	7.00	7.01	7.02		
Picrate ^{b)}	_	8.63	_	8.69	_	8.73		

Table 1. Chemical shifts (δ) of $\frac{1}{2}$ n and their Na⁺ complexes^a)

- a) 36 $^{\circ}$ C, THF-d₈, internal standard TMS, [1_n] = 0.10 mol dm⁻³, [alkali picrate] = 0.12 mol dm⁻³. Under these conditions, 1_n's totally exist as Na⁺ complexes.⁵)
- b) δ = 8.74 ppm in the absence of calixarenes.

Table 2. Relaxation times (T_1) of $\frac{1}{2}$ n and their Na⁺ complexes^{a)}

Proton	T ₁ /s							
	1 ₄	1 ₄ -Na ⁺	1 6	¹ _∼ 6 ^{+Na⁺}	¹ 8	1 ₈ +Na		
a	2.51	0.50	1.44	0.64	0.78	0.74		
b	1.17	b)	0.75	b)	0.43	0.38		
С	0.36	0.23	0.20	0.13	0.16	0.14		
đ	0.73	0.54	0.64	0.56	0.48	0.49		
е	0.17	0.15 ^{c)}	0.19	b)	0.12	0.09		
f	0.67	0.31	0.41	0.35	0.37	0.32		
Picrate ^{d)}	_	6.75	_	7.82	-	9.78		

- a) Measurement conditions are recorded in footnote a) in Table 1.
- b) T_1 could not be determined because of the overlap of ${\mbox{H}}^b$ and ${\mbox{H}}^e$.
- c) T_1 for H_{exo} . The peaks for H_{endo} overlapped with those for H^b .
- d) $T_1 = 9.15$ s in the absence of calixarenes.

458 Chemistry Letters, 1990

The T_1 values obtained under the same conditions as Table 1 are summarized in Table 2. The T_1 values for most protons decreased when $1_{\rm A}$ complexed Na⁺, indicating that Na⁺ acts as a template ion to suppress the ring fluctuation. Basically, the change in T_1 is parallel to the change in δ : the most distinct T_1 decrease was observed for 1_4 and next for 1_6 , whereas the T_1 values for 1_8 scarcely changed. Among six different protons in 1_n , the marked T_1 decrease was observed for methyl protons (proton a) in 1_4 (ΔT_1 2.01 s) and 1_6 (ΔT_1 0.80 s). This change means that the molecular motion of ester groups, which is possible in the absence of Na⁺, is considerably frozen by complexation with Na⁺. The T_1 decrease in aromatic protons (proton f) is also noteworthy (ΔT_1 0.36 s for 1_4 and 0.06 s for 1_6). This suggests that the freezing effect induced at the ester moieties is transmitted to the aromatic rings. On the other hand, the T_1 values for the ArCH₂Ar protons (proton e), which serve as connectors of aromatic rings, changed to a smaller extent.

The foregoing results establish that in 1_n , the terminal groups in an ethoxycarbonylmethoxy-p-t-butylbenzene unit move vigorously whereas the molecular motion of the central $\operatorname{ArCH}_2\operatorname{Ar}$ is rather suppressed. Na⁺ ion acts as a template ion to specifically freeze the molecular motion of these terminal groups. Thus, the ethoxycarbonylmethoxy-p-t-butylbenzene unit features a "seesaw motion" around the $\operatorname{ArCH}_2\operatorname{Ar}$ as a central support. This is a novel image for ionophoric calix[n]arenes obtained by the T_1 measurements.

References

- 1) C. D. Gutsche, Acc. Chem. Res., <u>16</u>, 161 (1983).
- 2) C. D. Gutsche and L. J. Bauer, J. Am. Chem. Soc., 107, 5052, 5059 (1985).
- 3) K. Araki, S. Shinkai, T. Matsuda, Chem. Lett., 1989, 581.
- 4) L. J. Bauer and C. D. Gutsche, J. Am. Chem. Soc., 107, 6063 (1985).
- 5) T. Arimura, M. Kubota, T, Matsuda, O. Manabe, and S. Shinkai, Bull. Chem. Soc. Jpn., <u>62</u>, 1672 (1989)
- 6) R. L. Vold, J. S. Waugh, M. P. Klein, and D. E. Phelps, J. Chem. Phys., <u>48</u>, 3831 (1968).
- 7) A. Arduini, A. Pochini, S. Reverberi, R. Ungaro, G. D. Andreetti, and F. Ugozzoli, Tetrahedron, 42, 2089 (1986).
- 8) T. Arimura, M. Kubota, T. Matsuda, O. Manabe, and S. Shinkai, Bull. Chem. Soc. Jpn., <u>62</u>, 1674 (1989).
- 9) A. Auduini, E. Ghidini, A. Pochini, R. Ungaro, G. D. Andreetti, G. Calestani, and F. Ugozzoli, J. Inclusion Phenom., 6, 119 (1988).

(Received December 21, 1989)